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Association Rule Mining
grocery =['milk','butter’,'yogurt', rice’]

How many different pairs (2) of items you can build?
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Support(X) = (Number of transactions containing X) / (Total number of transactions)

Confidence(X —Y) = (Number of transactions containing X and Y) / (Number of txn. containing X)

TID It .
100 | A ecms D consider 100, 200, 300, and 400 are the unique identifiers of the four
200 B C E transactions: A = sugar, B = bread, C = coffee, D = milk, and E = cake.
300 |A B C E

400 B E

The first step is to count the

The second step is to generate all the association rules

frequencies of k-itemsets

from the frequent itemsets.

Itemsets Frequency o'/
{A} 2 Mmin ¥ 7 "/,,, Association rules with 1-item consequences from 3-itemsets
{B} 3 N 6° RuleNo Rule Confidence support
{C} 3 v Rulel BUC > E _ 100% 50%
{D} 1 Rule2 BUE—C  66.7% 50%
{E} 3 Rule3 CUE—B  100% 50%
ltemsets Frequency L . . 5
{4, B} 1 Association rules with 2-item consequences from 3-itemsets
{A,C} 2 RuleNo Rule Confidence support
Eﬁ, g{ i Ruled B >CUE __661% 50%
) Rule5 C — BUE 66.7% 50%
{g, g} § Rule6 E=SBUC  66.7% 50%
EC: D]% 1 Association rules frequent 2-itemsets
{C,E} 2 RuleNo Rule _Confidence support
Rule7 A=C 100% 50%
Itemsets  Frequency Rule8 C— A 66.7% 50%
A,B,C 1 .
{ ¥ RuleNo Rule Confidence support
{A,B, E} 1
{A,C, D} 1 Rule9 B —-C 66.7% 50%
{A,C,E} 1 Rulelo® C — B 66.7% 50%
B,C,E 2
f ' RuleNo Rule Confidence support
Rulell B — E 100% 75%
- jt;msgt;} Irequency Rulel2 E — B 100% 75%
RuleNo Rule Confidence support
Ruleld. .C= E 66.7% 50%
Rulel4 F —C 66.7% 50%
coffee not coffee
tea 20 5| 25
not tea 70 5/ 75
90 10 100

We can apply the support-confidence model to the potential association rule
. tea — coffee
The support for this rule is 20%, which is fairly high.

The confidence is the conditional ili
r probability that a cust
given that he/she buys tea, ie., : ooy Soffee

en t . P[tea AND coffee]/P[tea]=20/25=0.8, or 809
which is also fairly high. Hence, the rule tea— coffee is a valid rule. ’ *

s



Numerical Precision and Stability Analysis
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A parameter is a numerical descriptive measure of a population. Because it is based
on the observations in the population, its value is almost always unknown.

A sample statistic is a numerical descriptive measure of a sample. It is calculated

Inferential Statistics

from the observations in the sample.

E— ]
10 Samples of n=11 Height Measurements from XYZ University.
Sample [\ = (32 Hq}&x “TEekEess Measurements  (in.  Cms ) Mean Median
1 173 171 187 151 188 181 182 157 162 169 193 | 174.00 173
2 181 190 182 171 1%1 177 162 172 188 200 193 182.09 182
3 192 195 187 187 172 164 164 189 179 T2 173 180.36 182
4 173 157 150 154 168 174 171 182 200 181 187 17245 173
5 169 160 167 170 197 159 174 174 161 173 160 = 169.46 169
6 179 170 167 174 173 178 173 170 173 198 187 17655 173
7 66 177 162 171 154 177 154 179 175 185 193 172.09 175
8 164 199 152 153 163 156 184 151 198 167 180  169.73 164
9 181 193 151 166 180 199 180 184 18 181 175 = 179.27 181
10 155 199 199 171 172 157 173 187 190 185 150 = 176.18 173
Histogram of XBAR, MEDIAN . . . .
Sampling Distribution is a
156 162 168 174 180 186 192 P
XEAR T / probability distribution of a
G statistic obtained from a larger
"-\x number of samples drawn
150 from a specific population
g fl / Sta ﬂk&\f»of SMP(M\Z,
e i Smping A SE
e distribution
for statistic B Sampling
S0 distribution
for statistic A
156 162 168 174 180 186 192
Population Parameter Sample Statistic
~ S
Mean: I x 2% o
Variance: o’ s? ;B
Standard deviation: o §
| proportion: p p



Properties of the Sampling Distribution of x
1. The mean of the sampling distribution of x equals the mean of the sampled
population. That is, u; = E(X) = .
2. The standard deviation of the sampling distribution of x equals

Standard deviation of sampled population
Square root of sample size

That is, oz = o/ Vn*
The standard deviation o7 is often referred to as the standard error of the mean.

N n > 3'0 17 .
" Central Limit Theorem

Consider . of n observations selected from a population (any popu-

lation) with mean u and standard deviation ¢. Then, when # is sufficiently large, the
sampling distribution of x will be approximately a normal distribution with mean

u; = w and standard deviation o = o/ Vn. The larger the sample size, the better
will be the normal approximation to the sampling distribution of x."

Sampling Sampling Sampling
Original distribution of distribution of distribution of
population xforn=2 xforn=5 X forn=30

AL N

x [f-\] X /\ X i 5 .
s L
(=t
5 %
x X X X E/,’;f




A point estimator of a population parameter is a rule or formula that tells us how to
use the sample data to calculate a single number that can be used as an estimate of
the target parameter.

An interval estimator (or confidence interval) is a formula that tells us how to use
the sample data to calculate an interval that estimates the target parameter.

— — Desired Confidence Interval Z-Score
(X — something, X + something) 90% 1645
95% 1.96
99% 2.576

fFoc u/ AS /. (ofidence el

Problem Consider the large hospital that wants to
estimate the average length of stay of its patients,

. The hospital randomly samples n = 100 of its |
patients and finds that the sample mean length of

stay is X = 4.5 days. Also, suppose it is known that the
standard deviation of the length of stay for all hospi-

tal patients is o = 4 days. Use the interval estimator

x T 1.9607; to calculate a confidence interval for the
target parameter, u.

Solution Substituting x = 4.5 and o = 4 into the interval estimator formula, we obtain:
x * 190z =x + (1.96)0/Vn =45 + (1.96)(4/V100) = 4.5 + .78

Or, (3.72,5.28).
/
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It is known (as long as n is large enough) that X is approximately normal with mean p and

standard deviation — g ——= ~N(0,1) 7 - X - /u
\/_ /\/— |
e (J_’
Find h that P < X - 0.95
1Inda c suc a C 0_/\/_ %_
¢(c) — ¢(—c) = 0.95
é(c) — (1 — ¢(c)) = 0.95
2¢(c) = 1.95
(c) = 0.975
= ¢~1(0.975)
;
11q+00f i %
z 0.00 0.01 0.02 0.03 0.04 0.05 @’6) 0.07
0.0 | 0500 0.5040 0.5080 0.5120  0.5160  0.5199  0.5239  0.5279  0.5319  0.5359
01| 05398 0.5438  0.5478  0.5517  0.5557  0.5586  0.5636  0.5675  0.5714  0.5753
02| 05793 0.5832 0.5871  0.5910  0.5948  0.5987  0.6026  0.6064  0.6103  0.6141
03| 06179 06217 0.6255 0.6293  0.6331  0.6368  0.6406  0.6443  0.6480  0.6517
0.4 | 0.6554 0.6591 0.6628  0.6664 0.6700 0.6736  0.6772  0.6808  0.6844  0.6879
05| 06915 06950  0.6985 0.7019  0.7054  0.7088  0.7123  0.7157  0.7190  0.7224
06| 07257 07291 07324  0.7357 0.7389  0.7422  0.7454 0.7486  0.7517  0.7549
07| 07580 0.7611 0.7642  0.7673  0.7704 0.7734  0.7764  0.7794  0.7823  0.7852
08| 07881 07910 0.7939  0.7967 0.7995  0.8023  0.8051  0.8078  0.8106  0.8133
09 | 08159 0.818 08212 0.8238 0.8264 0.8289  0.8315  0.8340  0.8365  0.8389
1.0 | 08413 0.8438 0.8461  0.8485  0.8508  0.8531  0.8554  0.8577  0.8599  0.8621
11| 0.8643 0.8665 0.8686 0.8708  0.8729 0.8749 0.8770 0.8790  0.8810  0.8830
1.2 | 0.8849 0.8869  0.8888  0.8907  0.8925 0.8944  0.8962  0.8980  0.8997  0.9015
13| 09032 0.9049 0.9066  0.9082  0.9099  0.9115  0.9131  0.9147 09162  0.9177
14| 09192 09207 09222 0923  0.9251  0.9265 0.9279  0.9292  0.9306  0.9319
15| 09332 0.9345 0.9357 0.9370  0.9382  0.9394 0.9406  0.9418  0.9429  0.9441
1.6 | 0.9452 0.9463 0.9474  0.9484  0.9495 0.9505  0.9515  0.9525  0.9535  0.9545
17| 0.9554 0.9564 0.9573  0.9582  0.9591  0.9599  0.9608  0.9616  0.9625  0.9633
1.8 | 09641 0.9649  0.9656  0.9664  0.9671  0.9678  0.9686  0.9693  0.9699  0.9706
@ 09713 09719 09726 09732 09738 09744 [0.9750 | 0.975%6  0.9761  0.9767
0| 09772 09778 09783 09788  0.9793  0.9798  0.9803  0.9808  0.9812  0.9817
21| 09821 0.9826 0.9830  0.9834 09838  0.9842 0.9846  0.9850  0.9854  0.9857
22| 09861 09864 09868 09871 0.9875 0.9878  0.9881  0.9884  0.9887  0.9890
23| 09893 0.9896  0.9898  0.9901  0.9904  0.9906  0.9909  0.9911  0.9913  0.9916
24| 09918 09920 09922 0.9924 09927 0.9929 0.9931 _0.9932 0.9934  0.99%
25| 09938 09940 09941 09943  0.9945 0.9946  0.9948  0.9943' 0.9951  0.9952
26| 09953 0.9955  0.9956  0.9957 0.9958  0.9960  0.9961  0.9962  0.99%63  0.9964
27| 09965 0.9966  0.9967  0.9968  0.9969  0.9970  0.9971  0.9972  0.9973  0.9974
28| 09974 09975 09976 09977 0.9977 0.9978  0.9979  0.9979  0.9980  0.9981
29| 0.9981  0.9982  0.9982  0.9983  0.9984  0.9984  0.9985  0.9985  0.9986  0.9986




Transaction Management _
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Active - In this state, the transaction is being executed.

This is the initial state of every transaction.

+ Partially Committed — When a transaction executes its
final operation, it is said to be in a partially committed

state.
TN\ + Failed - A transaction is said to be in a failed state if any

of the checks made by the database recovery system

Partially Gommiad \ fails. A failed transaction can no longer proceed further.

egin =) ,,,, has reached a failed state, then the recovery manager
Active End rolls back all its write operations on the database to bring

Aborted - If any of the checks fails and the transaction

to the execution of the transaction. Transactions in this

j the database back to its original state where it was prior
Aborted

Ka Failed state are called aborted. The database recovery module
can select one of the two operations after a transaction

2 \/ = aborts —

o Re-start the transaction
o Kill the transaction

+  Committed - If a transaction executes all its operations
successfully, it is said to be committed. All its effects are

now permanently established on the database system.



Stochastic Process / Markov Matrix

Let A be an n x n matrix. A scalar A is said to be an eigenvalue or a characteristic
value of A if there exists a nonzero vector x such that Ax = Ax. The vector x is said
to be an eigenvector or a characteristic vector belonging G A.

s €
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lZO t ( A> q
~ C
)\“ - OYL)// O(U"/:Q'\’),> Qx\>a) (P
v L {Q WK 4
, Qo = v
TSN
S
Find the eigenvalues and the corresponding eigenvectors of the matrix 2 Ai - Aa oA, = det(A)
_ 21 [\ 32 sum M = 1 (A)
e 4 @3 &) D— —2-»
Solution %
The characteristic equation is - }@ - @( /\) C_Z, )) —%”‘v
3-1 2 | 2 _ ) “
3 727A‘_0 o A-i-12=0 '—6’3)‘42)‘*?"
Thus, the eigenvalues of A are A; = 4 and A, = —3. To find the eigenvectors belonging  __ }L - -D
to A = 4, we must determine the null space of A — 41. - - ) @
-1 2
e M p-12= 0
Solving (A — 4D)x = 0, we get N
_ 7
X = (21, %) >:7/_, Ci/g)/\,( 3.0
Hence, any nonzero multiple of (2, 1)” is an eigenvector belonging to A1, and {(2, l)Tk - :
is a basis for the eigenspace corresponding to A;. Similarly, to find the eigenvectors for (= — =D
A2, we must solve /\ -\ A"' S)ﬁ (L

A+3Dx=0
)43 A-U)=
In this case, {(—1,3)} is a basis for N(A + 3I) and any nonzero multiple of (-1, 3)" A( )\ 7 + ( 7
- (M) M3 )=

is an eigenvector belonging to A. u
@ bis o 25w " \ -
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A stochastic process is any sequence of experiments for which the outcome at
any stage depends on chance. A Markov process is a stochastic process with the
following properties:
I. The set of possible outcomes or states is finite.
II. The probability of the next outcome depends only on the w
III. The probabilities are constant over time.

Pﬂg’a Romk s a | odor Mangos C,Q,@;\A”)m(wf

tao, Fre - shdeie procor
/7

A Markov chain is a mathematical process that transitions from one state to another within a finite
number of possible states

If a Markov chain with an n X n transition matrix A converges to a steady-state vector
X, then

(i) x is a probability vector.
(i) Ay = 1 is an eigenvalue of A and X is an eigenvector belonging to A,.

Let us denote the kth state vector in the chain by x; = (x(lk), x(zk), ... ,xff‘))T. The entries
of each x; are nonnegative and sum to 1. For each j, the jth entry of the limit vector x
satisfies

x; = lim x(k) >0

k—00
and
X1+ xp4 -+ x =klim(x(1k) +x(2k) + ... +x£lk)) =1
—>00
Therefore the steady-state vector X is a probability vector. O

Cf: Steven J. Leon - Linear Algebra with Applications-Pearson (2014) ch6 pp.315-325



Simple Linear Regression
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OLS & Multiple Linear Regression
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Hypothesis Testing

Hypothesis testing or significance testing is a method for testing a claim or hypothesis about a parameter in a population,
using data measured in a sample.

Step 1: State the hypotheses. The null hypothesis (H,), stated as the null, is a statement about a population parameter,
such as the population mean, that is assumed to be true. The null hypothesis is a starting pointMe
value stated in the null hypothesis is likely to be true. Remember, only reason we are testing the null hypothesis is
because we think it is wrong. An alternative hypothesis (Hy) is a statement that directly contradicts a null hypothesis by
stating that that the actual value of a population parameter is less than, greater than, or not equal to the value stated in the
null hypothesis.

Step 2: Set the criteria for a decision. To set the criteria for a decision, we state the level of significance for a test_Level-
of signifieance, or significance level, refers to a criterion of judgment upon which a decision is made regarding the value
stated in a null hypothesis. The criterion is based on the probability of obtaining a statistic measured in a sample if the
value stated in the null hypothesis were true. In experimental science, the criterion or level of significance is typically set
at 6. When the probability of obtaining a sample me ss than 5% if the pull hesis were true, then we reject
the value stated in the null hypothesis. / E ag't(}’f ew O"X%

Step 3: Compute the test statistic. The test statistic is a mathematlcal formula that allows researchers to determine the
likelihood of obtaining sample outcomes if the null hypothesis were true. The value of the test statistic is used to make a
decision regarding the null hypothesis.

Step 4: Make a decision. We use the value of the test statistic to make a decision about the null hypothesis. The decision
is based on the probability of obtaining a sample mean, given that the value stated in the null hypothesis is true.

* If the probability of obtaining a sample mean is less than 5% when the null hypothesis is true, then the decision is to
reject the null hypothesis.

» If the probability of obtaining a sample mean is greater than 5% when the null hypothesis i
to retain the null hypothesis.

robability of obtaining test results at least as extreme as the result actually observed, under the assum
that the null hypothesis is correct.

STEP 1: State the hypotheses.
A researcher states a null
hypothesis about a value in the
population (Hp) and an
alternative hypothesis that
contradicts the null hypothesis.

STEP 2: Set the criteria for a 4

decision. A criterion is set upon Level of Significance (Criterion)
which a researcher will decide

POPULATION

_\_—’—O—"X’,

whether to retain or reject the A .8 . y —gr
value stated in the null \ k?a-p\; . u-\( Smker N IMLF .
hypothesis. Conduc;'a e STEP 4: Make a decision. H o
A sample is selected from the with a sampley If the probability of obtaining a . R — '# 0'\(
population, and a sample mean selected from a sample mean is less than 5% [t a -
is measured. . when the null is true, then reject
opulation
Pop! - the null hypothesis.

If the probability of obtaining a

sample mean is greater than 5% IDDZ) —_—
STEP3: C o T v when the null is true, then %

B S D ik retain the null hypothesis.

statistic. This will produce a Measure data b 'b’ejé(; n D’k Y Q_Be(——é
value that can be compared to and compute  —— H
the criterion that was set before atest statistic. 0 H °

the sample was selected.

Decisions are made about the null hypothesis. Using the courtroom analogy, a judge decides whether a defendant is guilty or
not guilty. The judge does not make a decision of guilty or innocent because the defendant is assumed to be innocent. All
evidence presented in a trial is to show that a defendant is guilty. The evidence either shows guilt (decision: guilty) or does not
(decision: not guilty). In a similar way, the null hypothesis is assumed to be correct. A researcher conducts a study showing
evidence that this assumption is unlikely (we reject the null hypothesis) or fails to do so (we retain the null hypothesis).




The following are the steps followed in the performance of the t-test:

1. Set the significance level for the test.
2. Formulate the null and the alternative hypotheses.
3. Calculate the t-statistic using the formula below:

_bi-b

5

t

Where:
by = True slope coefficient.
bAl = Point estimate for by

blslf = Standard error of the regression coefficient.

4. Compare the absolute value of the t-statistic to the critical t-value (t_c). Reject
the null hypothesis if the absolute value of the t-statistic is greater than the
critical t-valuei.e., t > + teriticat 1t < —teritical-

T TGal)
Regression Statistics
Multiple R 0.9971
R Square 0.9941
Adjusted R Square 0.9922
Standard Error 3.6515
Observations 5 A

Coefficients Standard Error t Stat P-value

Intercept —159 10.520 (15.114)  0.001
Slope 0.26 0.012 22.517 0.000

The t-statistic is calculated using the formula:

Tufry A o
Tabp VPR

B.=°
B7°

He *
Ka
by

t
Sy~

Where:

e b = True slope coefficient
e b = Point estimator for by
e 53, = Standard error of the regression coefficient

0.26 — 0
0.012

o3 L =214

The critical two-tail t-values from the t-table with n — 2 :@degrees
freedom are: h

t. = £3.18
S
cf: hitps:/analystprep.com/cfa-level-1-exam/quantitative-methods/hypothesis-testing-in-regression-analysis/
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t Table

ccum. prob)| s trs te tas tso tos tors to o0 tom
one-taill 050 025 020 015 010 005 0025 0.01 0.005 0.001
twotails) 1.00 050 040 030 020 010 005 002 001 0002 0.001

0.000 1.000 1376 1.963 3.078 6.314 31.82 6366 318.31

2069 2500 2807 3485 3768

83

95% 98% 99% 99.8% 99.9%
Confidence Level

Notice that |t| > ¢, (i.e 21.67 > 3.18).
—

Therefore, the null hypothesis can be rejected. Further, we can conclude that
the estimated slope coefficient is statistically different from zero.

Or.
o 2L
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]
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QR Decomposition for beta estimation
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psok, pistrbd” Maximum Likelihood Estimation
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Example Suppose that X is a discrete random variable with the following probability

mass function: where 0 < 6 < 1 is a parameter. The following 10 independent observations L(
—_—
X [0 |1 g 3 ) Let us look at the log likelihood function b = (o
P(X) [26/3]6/3200-6)/3| (1—6)/3 ]|

10) = logL(9) = ilog P(Xi10)

were taken from such a distribution: (3,0,2,1,3,2,1,0,2,1). What is the maximum likelihood

2 1 2 1
2 (log 2 4 1og 9) +3 (log =4 1oge) +3 <log 2 log(1— a)) +2 (log = +log(l - 9))
estimate of 6. 3 3 3 3

C +5log+ 5log(1 — 6)

Solution: Since the sample is (3,0,2,1,3,2,1,0,2,1), the likelihood is
where C' is a constant which does not depend on 6. It can be seen that the log likelihood
L) = P(X =3)P(X =0)P(X =2)P(X =1)P(X =3) function is easier to maximize compared to the likelihood function.
x P(X=2)P(X =)P(X =0)P(X =2)P(X =1) Let the derivative of [(f) with respect to 6 be zero:
Substituting from the probability distribution given above, we have die) 5 5

L(@),ﬁp(x‘g),(§)2<§)3(2(1’9))3(179)2 df 6 1-0
i1 ‘ 3 3 3 3 and the solution gives us the MLE, which is 6 =05




Let X1, Xs,---, X, be arandom sample from a normal distribution with unknown mean y and variance 2. Find maximum
likelihood estimators of mean u and variance o2

Answer
In finding the estimators, the first thing we'll do is write the probability density function as a function of ; = p and 6, = o:
1 |: (:l?i — 01)2 j|
exp |—
A% 02\/ 2 292

for —oo < 6; < oo and 0 < 03 < oo. We do this so as not to cause confusion when taking the derivative of the likelihood
with respect to o2. Now, that makes the likelihood function:

f(xi;01,02) =

g 5 B 1 n
L(61,65) = I1 f(=:;61,62) = 6, (2m) "/2exp [_% > (@i — 01)2}
i=1 i=1
and therefore the log of the likelihood function:

n n z; — 01)?
logL(61,605) = —310g02 — Elog(%r) - %

Now, upon taking the partial derivative of the log likelihood with respect to 6;, and setting to 0, we see that a few things
cancel each other out, leaving us with:

Olog L (61,6,) —Z L (2i—61) (AJ g
96, - 26, -

Now, multiplying through by 65, and distributing the summation, we get:

0

E$i—n01:0

Now, solving for 8y, and putting on its hat, we have shown that the maximum likelihood estimate of 8, is:

Now for 6. Taking the partial derivative of the log likelihood with respect to 6,, and setting to 0, we get:

OlogL(61,6:)  n_ 3 (2 — 61)° SET )
00, 260, 20% o
Multiplying through by 263:
dlog L (61, 6,) n Y (i—601)? s )
—_— =t = =0 20!
26, 20, 262 4

we get:
—nby + > (2 — 91)2 =0
And, solving for 6,, and putting on its hat, we have shown that the maximum likelihood estimate of 8 is:

=12

~ r; — &

5y = 52 o D@ =3)
n

(I'll again leave it to you to verify, in each case, that the second partial derivative of the log likelihood is negative, and

therefore that we did indeed find maxima.) In summary, we have shown that the maximum likelihood estimators of © and

variance ¢ for the normal model are:

Xi 5 i — X)?
> :Xandézzw
n n

=

respectively.



Suppose the weights of randomly selected American female college students are normally distributed with
unknown mean p and standard deviation . A random sample of 10 American female college students
yielded the following weights (in pounds):

115 122 130 127 149 160 152 138 149 180

Based on the definitions given above, identify the likelihood function and the maximum likelihood estimator of x, the mean
weight of all American female college students. Using the given sample, find a maximum likelihood estimate of x as well.

Answer
The probability density function of X is:

202

Fwisu,0%) = a\;ﬂexp [, (s w)?}

for —oo < z < 0. The parameter space is @ = {(u,0) : —0o < p < co and 0 < ¢ < oo}. Therefore, (you might want to
convince yourself that) the likelihood function is:

Do) = o~ (2)"exp |~ o7 3 - ]

for —oo < p < oo and 0 < o < 0. It can be shown (we'll do so in the next example!), upon maximizing the likelihood
function with respect to y, that the maximum likelihood estimator of p is:

12 _
==Y X=X
ungl

Based on the given sample, a maximum likelihood estimate of y is:

E

1o 1
= =Sz =—(115+--- + 180) = 142.2
o L= g (115 + -+ 180)

(6 -8) —>0 W7

Properties of Estimator:

SR

/ UNBIASEDNESS: An estimator is said to be unbiased if in the long run it takes

s —
on the value of the population parameter. That is, if you were to draw a sample, A
~
compute the statistic, repeat this many, many times, then the average over all of B -
T
the sample statistics would equal the population parameter. L}(TK) %'/

L EFFICIENCY: An estimator is said to be efficient if in the class of unbiased A .
vr\’o'(é (325
estimators it has minimum variance. [b L' U E
/ e SUFFICIENCY: We say that an estimator is sufficient if it uses all the sample S, ~N
~/
¥
information. The median, because it considers only rank, is not sufficient. The Les, ;ﬁ
X
sample mean considers each member of the sample as well as its size, so is a
sufficient statistic.
CONSISTENCY: If an estimator, say 6, approaches the parameter 6 closer and

closer as the sample size n increases, 6 is said to be a consistent estimator of 6.



Derivation of Logistic Regression

1
6(x)= —x ' .
d 1+2 1 Core—7 [ need o bowtld LR
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= (1+e7) 9 H di=!
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__ K o %/
—(1+e"‘)2 k— PC ¢
_ 1 e : .
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_ 1 (I+e™-1
T l4e 1+e*
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14e> ( 1+e—x) f“?

VVJ()C)-(l—a(x» fﬁ ? '<HP) z
-
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For each training data-point, we havq\,a/features x; and an observed class, y, j C
The probability of the class is p, ify; = 1,or 1 =P if n=( 0 ) ° (-0 (
. —~ {‘—/
P(Y|X) = p(x - (1 - p(e)! ™ bUp =)

4 - POIX) = 3% (1=

Y=o+ p - x)
logl=ylogy + (1 - y)log(l -
=yloga(fy+ p, - x) + (1 — ylog(1 — 6(fy + p; - X))
dlogl _ Yy 9o (fy + p, - x) - (1-y) o1 —o(fy+ B, - x))
9p; c(fo+ P -x) 9p; (I =0(fy+ B -x) 9p;
Yy do(fo+pPr-x) 1-y) 96(fy+ P - %)

0Byt prx) 9B; 1—0(By+py - %) B,

- y o l-y 0By +py - %) seth)= 1) (L)
T oe(Bo+Bi-x) 1—0(fo+pix) 9P P
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Stochastic Gradient Descent
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Real Label
Positive  Negative

True False Y TP
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Clustering
ek CL\'\J\ fr\unmbz)z/ 0‘9 M’WD

S,: %9(,,@(1,. a ?SM ~ WW Stpsek S X e
Jori , g s

Trvide Astock  Teto e Qu)\ogau/ Cptes / %WW(DL
A‘ 5 @c'z,) g’g . QE_

\ oo L anitiond

Pocporties of pansiction b o otd 1 W
\ . ¥ ek (’Y\o ])a)\ em
O QC # QS A JA(LU/&\H’ be @/

@ A( N AJ — §b AV/’(‘)j‘é’ﬁ <S“\j& p-{; s -éumcw(f@

5 g Al PDWTLS are 0(4'/(1'71«.80' Some oy 0t/
@ U /Jr { = L e )
= datnbom*

Lo e "
i ({D(ﬂbALrA(é): % X%A /ﬁéyﬁ(') 74[ CZQ{H&/’_M\ ,))MCM\‘A_]
- [ L

st ce = [oedimn, onertls

—_— ity
" ot vt M neh F"mz foe
How bodthe coge Aunction s) o Do
o =4, K—,@CL .. — l\; %%&m%mm%
R VAR
2 R - N pewctt Inte v ¢ e

o Shiling ¢ numbel
Vardihion {9(9/) - (£ __@ g[ﬂ\@ 0~k exed

. 240 ] iK (,(f (H}}@;
= 5 2 :
P(%) — Qr{—(f(—( @ - o

el
240

P(g) _ 1 Pl oy

_ AP
!
S0



Cluster Analysis Proof

Property 1: The best choice for the centroids ¢,, ..., ¢ are the n-tuples which are the means of

the Cy, ..., Cy,. By best choice, we mean the choices that minimize SSg.

Proof: By calculus, the minimum of SS is achieved when %-= = o for all i and j where c;j is the

ith element in the n-tuple for c;. Now

ottt 35 S 1 T ) £

Thus Z)(( = S étj/
ney x€G

3 = cumerm "
xEC; E - .

and so

for all 7, which means that

where operations on n-tuples are defined element by element (as for vectors).
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Dimensionality Reduction

PCA is dimensionality Reduction Technique.
The PCAs of your data are the eigenvectors of your data’s covariance matrix
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