Regression Analysis

May 15, 2023

1 Introduction

2 Simple Linear Regression

Consider the hypothetical question we are analyzing if there is a relation between hours studied and marks scored in an exam. Here hours studied is independent variable and marks scored is dependent of hours studied. Regression analysis will help us quantify this effect. The fundamental assumption that we make in linear regression is there is a linear relation between dependent and independent variables.

$$
\begin{equation*}
\hat{y}=\beta_{0}+\beta_{1} x_{i} \tag{1}
\end{equation*}
$$

We will define a quanity Sum of squared residuals (SSR) as $\left(y_{i}-\hat{y_{i}}\right)^{2}$

$$
\begin{align*}
S S R & =\left(y_{i}-\hat{y_{i}}\right)^{2} \\
& =\sum_{i=1}^{n}\left(y_{i}-\left(\beta_{0}+\beta_{1} x_{i}\right)\right)^{2} \\
& =\sum_{i}\left[y_{i}^{2}+\left(\beta_{0}+\beta_{1} x_{i}\right)^{2}-2 y_{i}\left(\beta_{0}+\beta_{1} x_{i}\right)\right] \\
& =\sum_{i}\left[y_{i}^{2}+\beta_{0}^{2}+\beta_{1}^{2} x_{i}^{2}+2 \beta_{0} \beta_{1} x_{i}-2 \beta_{0} y_{i}-2 \beta_{1} x_{i} y_{i}\right] \tag{2}
\end{align*}
$$

Find β_{0} and β_{1} such that $y_{\text {actual }}$ - $y_{\text {predicted }}$ is small. To do this we need to minimise the SSR.
From Equation 2 we get,

$$
\begin{aligned}
S S R & =\sum_{i}\left[y_{i}^{2}+\beta_{0}^{2}+\beta_{1}^{2} x_{i}^{2}+2 \beta_{0} \beta_{1} x_{i}-2 \beta_{0} y_{i}-2 \beta_{1} x_{i} y_{i}\right] \\
\frac{\partial S S R}{\partial \beta_{0}} & =\sum_{i}\left[2 \beta_{0}+2 \beta_{1} x_{i}-2 y_{i}\right]
\end{aligned}
$$

We will set $\frac{\partial S S R}{\partial \beta_{0}}$ to zero that is

$$
\frac{\partial S S R}{\partial \beta_{0}}=\sum_{i}\left[2 \beta_{0}+2 \beta_{1} x_{i}-2 y_{i}\right]:=0
$$

Now,

$$
\begin{aligned}
& 2 \sum_{i=1}^{n}\left[\beta_{0}+\beta_{1} x_{i}-y_{i}\right]=0 \\
& n \beta_{0}=\sum_{i}^{n} y_{i}-\sum_{i}^{n} \beta_{1} x_{i} \\
& \beta_{0}=\frac{\sum_{i}^{n} y_{i}}{n}-\frac{\sum_{i}^{n} \beta_{1} x_{i}}{n}
\end{aligned}
$$

That is $\beta_{0}=\bar{y}-\beta_{1} \bar{x}$

Now to find β_{1} we need to minimise SSR i.e. equation 2 wrt β_{1}
From Equation 2 we get,

$$
\begin{aligned}
S S R & =\sum_{i}\left[y_{i}^{2}+\beta_{0}^{2}+\beta_{1}^{2} x_{i}^{2}+2 \beta_{0} \beta_{1} x_{i}-2 \beta_{0} y_{i}-2 \beta_{1} x_{i} y_{i}\right] \\
\frac{\partial S S R}{\partial \beta_{1}} & =\sum_{i}\left[2 \beta_{1} x_{i}^{2}+2 \beta_{0} x_{i}-2 x_{i} y_{i}\right]
\end{aligned}
$$

setting this to zero, we get

$$
\sum_{i}\left[2 \beta_{1} x_{i}^{2}+2 \beta_{0} x_{i}-2 x_{i} y_{i}\right]=0
$$

$$
\begin{gather*}
-2 \sum_{i} x_{i}\left[y_{i}-\left(\beta_{0}+\beta_{1} x_{i}\right)\right]=0 \\
\sum_{i} x_{i}\left[y_{i}-\left(\beta_{0}+\beta_{1} x_{i}\right)\right]=0 \tag{3}
\end{gather*}
$$

Now we can substitute the already derived value of β_{0} in equation 3 .

$$
\begin{align*}
\sum_{i} x_{i}\left[y_{i}-\left(\beta_{0}+\beta_{1} x_{i}\right)\right] & =0 \\
\sum_{i} x_{i}\left[y_{i}-\left(\left(\bar{y}-\beta_{1} \bar{x}\right)+\beta_{1} x_{i}\right)\right] & =0 \\
\sum_{i} x_{i}\left[y_{i}-\bar{y}+\beta_{1} \bar{x}-\beta_{1} x_{i}\right] & =0 \\
\sum_{i} x_{i}\left(y_{i}-\bar{y}\right)-\sum_{i} \beta_{1} x_{i}\left(x_{i}-\bar{x}\right) & =0 \\
\sum_{i} x_{i}\left(y_{i}-\bar{y}\right) & =\sum_{i} \beta_{1} x_{i}\left(x_{i}-\bar{x}\right) \\
\sum_{i} x_{i}\left(y_{i}-\bar{y}\right) & =\beta_{1} \sum_{i} x_{i}\left(x_{i}-\bar{x}\right) \\
\beta_{1} & =\frac{\sum_{i} x_{i}\left(y_{i}-\bar{y}\right)}{\sum_{i} x_{i}\left(x_{i}-\bar{x}\right)} \tag{4}
\end{align*}
$$

There is another form of β_{1} which is more frequently presented that is equivalent to equation 4 . To find
that out lets consider,

$$
\begin{aligned}
\sum_{i}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right) & =\left(x_{i}\left(y_{i}-\bar{y}\right)-\bar{x}\left(y_{i}-\bar{y}\right)\right) \\
& =\sum_{i} x_{i}\left(y_{i}-\bar{y}\right)-\bar{x} \underbrace{\sum_{i}\left(y_{i}-\bar{y}\right)}_{\text {this is always zero }} \\
& =\sum_{i} x_{i}\left(y_{i}-\bar{y}\right) \\
& =\sum_{i} y_{i}\left(x_{i}-\bar{x}\right) \\
\sum_{i}\left(x_{i}-\bar{x}\right)^{2} & =\sum_{i}\left(x_{i}-\bar{x}\right)\left(x_{i}-\bar{x}\right) \\
& =\sum_{i} x_{i}\left(x_{i}-\bar{x}\right)-\bar{x}\left(x_{i}-\bar{x}\right) \\
& =\sum_{i} x_{i}\left(x_{i}-\bar{x}\right)-\bar{x}-\underbrace{\sum_{i}\left(x_{i}-\bar{x}\right)}_{\text {this is zero }} \\
& =\sum_{i} x_{i}\left(x_{i}-\bar{x}\right)
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
\beta_{1}=\frac{\sum_{i} x_{i}\left(y_{i}-\bar{y}\right)}{\sum_{i} x_{i}\left(x_{i}-\bar{x}\right)}=\frac{\sum_{i}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}} \tag{4}
\end{equation*}
$$

$$
\begin{aligned}
& \beta_{0}=\bar{y}-\beta_{1} \bar{x} \\
& \beta_{1}=\frac{\sum_{i}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}
\end{aligned}
$$

3 Multiple Linear Regression

Let us consider the regression equation for m predictors is

$$
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}+\cdots+\beta_{m} x_{m}+\epsilon
$$

where we have $(n+1)$ examples in our dataset.

$$
\left[\begin{array}{c}
y_{0} \\
y_{1} \\
\vdots \\
y_{n}
\end{array}\right]=\left[\begin{array}{cccccc}
1 & x_{11} & x_{12} & x_{13} & \ldots & x_{1 m} \\
1 & x_{21} & x_{22} & x_{23} & \ldots & x_{2 m} \\
1 & \vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_{n 1} & x_{n 2} & x_{n 3} & \ldots & x_{n m}
\end{array}\right]\left[\begin{array}{c}
\beta_{0} \\
\vdots \\
\beta_{m}
\end{array}\right]+\left[\begin{array}{c}
\epsilon_{0} \\
\epsilon_{1} \\
\vdots \\
\epsilon_{n}
\end{array}\right]
$$

The above equation in matrix form is $Y=X \beta+\epsilon$,
Note that Y is matrix of shape $(n+1) \times 1$ and X is of shape $(n+1) \times(m+1)$ and it is called design matrix, β is coefficient matrix of form $(m+1) \times 1$ and ϵ is of shape $(n+1) \times 1$ and called noise or disturbance. $Y=X \beta+\epsilon$, and $\epsilon=Y-X \beta$. To minimize ϵ we take ${ }^{1}$ inner product.

$$
\begin{aligned}
\epsilon^{T} \epsilon & =(Y-X \beta)^{T}(Y-X \beta) \\
& =\left(Y^{T}-(X \beta)^{T}\right)(Y-X \beta) \\
& =\left(Y^{T}-\beta^{T} X^{T}\right)(Y-X \beta) \\
& =Y^{T} Y-Y^{T} X \beta-\beta^{T} X^{T} Y+\beta^{T} X^{T} X \beta
\end{aligned}
$$

Note that $\beta^{T} X^{T} Y$ is a scaler, and verify that shape of
$\beta^{T} X^{T} Y$ is $\underbrace{1 \times(m+1)}_{\beta^{T}} \times \underbrace{(m+1) \times(n+1)}_{X^{T}} \times \underbrace{(n+1) \times 1}_{Y}=1$ also traspose of a scalar is also scaler, that is $\left(Y^{T} X \beta\right)^{T}=\beta^{T} X^{T} Y$.

$$
\epsilon^{T} \epsilon=Y^{T} Y-2 \beta^{T} X^{T} Y+\beta^{T} X^{T} X \beta
$$

To minimise ${ }^{2}$,

[^0]\[

$$
\begin{aligned}
\frac{\partial \epsilon^{T} \epsilon}{\partial \beta} & =-2 X^{T} Y+2 X^{T} X \beta \\
0 & =-2 X^{T} Y+2 X^{T} X \beta \\
X^{T} X \beta & =X^{T} Y
\end{aligned}
$$
\]

The above form is called normal equations.
If $X^{T} X$ is non-singular (that is, inverse exists) then

$$
\begin{gathered}
\left(X^{T} X\right)^{-1} X^{T} X \beta=\left(X^{T} X\right)^{-1} X^{T} Y \\
\beta=\left(X^{T} X\right)^{-1} X^{T} Y
\end{gathered}
$$

Implementing in Python X is the data matrix and Y is response. Using native numpy methods we can find out estimates of β
betas $=(n p . l i n a l g . i n v(X . T @ X)) @ X . T @ Y$

4 Standard Error \& Hypothesis Testing

[^0]: ${ }^{1}$ Inner product tells you how much of one vector is pointing in the direction of another one. Inner product, of two vectors, is the sum of the products of corresponding components

 Matrix Calculus Review
 $2 \quad \frac{\partial a^{T} b}{\partial b}=\frac{\partial b^{T} a}{\partial b}=a$

 $$
 \frac{\partial b^{T} A b}{\partial b}=2 A b=2 b^{T} A
 $$

