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1 Introduction

2 Simple Linear Regression

Consider the hypothetical question we are analyzing if there is a relation between hours studied and marks

scored in an exam. Here hours studied is independent variable and marks scored is dependent of hours

studied. Regression analysis will help us quantify this effect. The fundamental assumption that we make in

linear regression is there is a linear relation between dependent and independent variables.

ŷ = β0 + β1xi (1)

We will define a quanity Sum of squared residuals (SSR) as (yi − ŷi)
2

SSR = (yi − ŷi)
2

=

n∑
i=1

(yi − (β0 + β1xi))
2

=
∑
i

[
y2i + (β0 + β1xi)

2 − 2yi(β0 + β1xi)
]

=
∑
i

[
y2i + β2

0 + β2
1x

2
i + 2β0β1xi − 2β0yi − 2β1xiyi

]
(2)

Find β0 and β1 such that yactual − ypredicted is small. To do this we need to minimise the SSR.

From Equation 2 we get,
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SSR =
∑
i

[
y2i + β2

0 + β2
1x

2
i + 2β0β1xi − 2β0yi − 2β1xiyi

]
∂SSR

∂β0
=

∑
i

[2β0 + 2β1xi − 2yi]

We will set
∂SSR

∂β0
to zero that is

∂SSR

∂β0
=

∑
i

[2β0 + 2β1xi − 2yi] := 0

Now,

2

n∑
i=1

[β0 + β1xi − yi] = 0

nβ0 =

n∑
i

yi −
n∑
i

β1xi

β0 =

∑n
i yi
n

−
∑n

i β1xi

n

That is β0 = ȳ − β1x̄

Now to find β1 we need to minimise SSR i.e. equation 2 wrt β1

From Equation 2 we get,

SSR =
∑
i

[
y2i + β2

0 + β2
1x

2
i + 2β0β1xi − 2β0yi − 2β1xiyi

]
∂SSR

∂β1
=

∑
i

[
2β1x

2
i + 2β0xi − 2xiyi

]
setting this to zero, we get

∑
i

[
2β1x

2
i + 2β0xi − 2xiyi

]
= 0
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−2
∑
i

xi [yi − (β0 + β1xi)] = 0

∑
i

xi [yi − (β0 + β1xi)] = 0 (3)

Now we can substitute the already derived value of β0 in equation 3.

∑
i

xi [yi − (β0 + β1xi)] = 0

∑
i

xi [yi − ((ȳ − β1x̄) + β1xi)] = 0

∑
i

xi [yi − ȳ + β1x̄− β1xi] = 0

∑
i

xi(yi − ȳ)−
∑
i

β1xi(xi − x̄) = 0

∑
i

xi(yi − ȳ) =
∑
i

β1xi(xi − x̄)

∑
i

xi(yi − ȳ) = β1

∑
i

xi(xi − x̄)

β1 =

∑
i xi(yi − ȳ)∑
i xi(xi − x̄)

(4)

There is another form of β1 which is more frequently presented that is equivalent to equation 4. To find
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that out lets consider,

∑
i

(xi − x̄)(yi − ȳ) = (xi(yi − ȳ)− x̄(yi − ȳ))

=
∑
i

xi(yi − ȳ)− x̄
∑
i

(yi − ȳ)︸ ︷︷ ︸
this is always zero

=
∑
i

xi(yi − ȳ)

=
∑
i

yi(xi − x̄) (numerator in 4)

∑
i

(xi − x̄)2 =
∑
i

(xi − x̄)(xi − x̄)

=
∑
i

xi(xi − x̄)− x̄(xi − x̄)

=
∑
i

xi(xi − x̄)− x̄−
∑
i

(xi − x̄)︸ ︷︷ ︸
this is zero

=
∑
i

xi(xi − x̄) (denominator in 4)

Therefore,

β1 =

∑
i xi(yi − ȳ)∑
i xi(xi − x̄)

=

∑
i(xi − x̄)(yi − ȳ)∑

i(xi − x̄)2
(4)

β0 = ȳ − β1x̄

β1 =

∑
i(xi − x̄)(yi − ȳ)∑

i(xi − x̄)2

3 Multiple Linear Regression

Let us consider the regression equation for m predictors is

y = β0 + β1x1 + β2x2 + β3x3 + · · ·+ βmxm + ϵ
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where we have (n+ 1) examples in our dataset.



y0

y1
...

yn


=



1 x11 x12 x13 . . . x1m

1 x21 x22 x23 . . . x2m

1
...

...
...

. . .
...

1 xn1 xn2 xn3 . . . xnm




β0

...

βm

+



ϵ0

ϵ1
...

ϵn


The above equation in matrix form is Y = Xβ + ϵ,

Note that Y is matrix of shape (n+1)×1 and X is of shape (n+1)×(m+1) and it is called design matrix,

β is coefficient matrix of form (m+ 1)× 1 and ϵ is of shape (n+ 1)× 1 and called noise or disturbance.

Y = Xβ + ϵ, and ϵ = Y −Xβ. To minimize ϵ we take 1inner product.

ϵT ϵ = (Y −Xβ)T (Y −Xβ)

=
(
Y T − (Xβ)T

)
(Y −Xβ)

=
(
Y T − βTXT

)
(Y −Xβ)

= Y TY − Y TXβ − βTXTY + βTXTXβ

Note that βTXTY is a scaler, and verify that shape of

βTXTY is 1× (m+ 1)︸ ︷︷ ︸
βT

× (m+ 1)× (n+ 1)︸ ︷︷ ︸
XT

× (n+ 1)× 1︸ ︷︷ ︸
Y

= 1 also traspose of a scalar is also scaler, that is

(Y TXβ)T = βTXTY .

ϵT ϵ = Y TY − 2βTXTY + βTXTXβ

To minimise2,

1Inner product tells you how much of one vector is pointing in the direction of another one. Inner product, of two vectors,
is the sum of the products of corresponding components

2

Matrix Calculus Review

∂aT b

∂b
=

∂bT a

∂b
= a

∂bTAb

∂b
= 2Ab = 2bTA
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∂ϵT ϵ

∂β
= −2XTY + 2XTXβ

0 = −2XTY + 2XTXβ

XTXβ = XTY

The above form is called normal equations.

If XTX is non-singular (that is, inverse exists) then

(
XTX

)−1
XTXβ =

(
XTX

)−1
XTY

β =
(
XTX

)−1
XTY

Implementing in Python X is the data matrix and Y is response. Using native numpy methods we can

find out estimates of β

betas = (np.linalg.inv(X.T@X))@X.T@Y

4 Standard Error & Hypothesis Testing
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